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Abstract

Recently many efforts have been devoted to applying graph
neural networks (GNNs) to molecular property prediction
which is a fundamental task for computational drug and mate-
rial discovery. One of major obstacles to hinder the successful
prediction of molecule property by GNNs is the scarcity of
labeled data. Though graph contrastive learning (GCL) meth-
ods have achieved extraordinary performance with insuffi-
cient labeled data, most focused on designing data augmen-
tation schemes for general graphs. However, the fundamental
property of a molecule could be altered with the augmenta-
tion method (like random perturbation) on molecular graphs.
Whereas, the critical geometric information of molecules re-
mains rarely explored under the current GNN and GCL ar-
chitectures. To this end, we propose a novel graph contrastive
learning method utilizing the geometry of the molecule across
2D and 3D views, which is named GeomGCL. Specifically,
we first devise a dual-view geometric message passing net-
work (GeomMPNN) to adaptively leverage the rich informa-
tion of both 2D and 3D graphs of a molecule. The incorpo-
ration of geometric properties at different levels can greatly
facilitate the molecular representation learning. Then a novel
geometric graph contrastive scheme is designed to make both
geometric views collaboratively supervise each other to im-
prove the generalization ability of GeomMPNN. We evaluate
GeomGCL on various downstream property prediction tasks
via a finetune process. Experimental results on seven real-life
molecular datasets demonstrate the effectiveness of our pro-
posed GeomGCL against state-of-the-art baselines.

1 Introduction
The prediction of molecular property has been widely con-
sidered as one of the most significant tasks in computational
drug and material discovery (Goh, Hodas, and Vishnu 2017;
Wu et al. 2018; Chen et al. 2018). Accurately predicting
the property can help to evaluate and select the appropri-
ate chemical molecules with desired characteristics for many
downstream applications (Xiong et al. 2019; Yang et al.
2019; Song et al. 2020; Chen et al. 2021).

With the remarkable success of graph neural networks
(GNNs) in various graph-related tasks in recent years (Wu

*This work was done when the first author was an intern in
Baidu Research under the supervision of the second author.
This is a preprint.

et al. 2020), a number of efforts have been made from dif-
ferent directions to design GNN models for molecular prop-
erty prediction like (Yang et al. 2019; Danel et al. 2020;
Maziarka et al. 2020; Song et al. 2020; Chen et al. 2021).
The fundamental idea is to regard the topology of atoms and
bonds as a graph, and translate each molecule to a represen-
tation vector with powerful GNN encoders, followed by the
prediction module for the specific property.

Along the other line of development for GNNs, graph
contrastive learning (GCL) methods (Wu et al. 2021) have
shown promising performance in many applications when
there is a lack of sufficient labeled data. The scarcity of la-
beled data is one of the major obstacles to hinder the pre-
diction performance of GNN models (as well as other deep
learning models) for molecular property prediction. For ex-
ample, it usually requires a high cost to collect the labeled
data for certain computational drug discovery task.

More special attention should be paid to developing GCL
for molecular property prediction. Existing GCL methods
usually adopt different data augmentation schemes for the
graph, which may change the semantics of graphs across
domains. Most of the current GCL methods on molecular
graphs are still based on such data augmentation paradigm
which could inevitably alter the natural structure of a
molecule. For example, You et al. (2020) proposes to drop
atoms, perturb edges and mask attributes to augment the
data. However, since each of atoms has an effect on the
molecular property, such random dropping and perturbation
of atoms could destroy the structure of a molecule. Though
some other methods like MoCL (Sun et al. 2021) adopt pre-
defined sub-structures of the molecule to alleviate the prob-
lem of random corruption, such substitution rules still have
a probability to violate the chemical principle.

Our insight is to design a new GCL method for molecular
property prediction from different geometric views without
corrupting the molecular structure. As shown in Figure 1, the
molecules can be represented as two-dimensional (2D) and
three-dimensional (3D) structural graphs. Although there
are emerging geometric GNN models which can make use
of multiple factors from the 2D chemical graph or 3D
spatial graph (Maziarka et al. 2020; Klicpera, Groß, and
Günnemann 2020; Shui and Karypis 2020; Danel et al.
2020), all of them capture the geometric information from
a single view for representation learning. In practice, the 2D
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view and 3D view of a molecule are generated based on dif-
ferent methods: the 2D view derives directly from the struc-
tural formula of a chemical compound, while the 3D view
is usually estimated by conformation generation procedure
(Hawkins 2017) using the tools like RDKit (Tosco, Stiefl,
and Landrum 2014). Considering that molecular graphs in
2D and 3D views can provide chemical and geometric in-
formation at different levels and further complement each
other, there is a demand to develop a new paradigm for
the molecule-driven contrastive learning without changing
chemical semantics. Therefore, such different views of one
molecule provide a great opportunity for designing a unique
graph contrastive learning scheme on molecular graphs.

To tackle the aforementioned challenges, we propose a
novel geometric-enhanced graph contrastive learning model
(GeomGCL) for molecular property prediction, which is
equipped with the adaptive geometric message passing net-
work (GeomMPNN) as well as a contrastive learning strat-
egy to augment the 2D-3D geometric structure learning pro-
cess. Firstly, we devise the dual-channel geometric learning
procedure to adapt the graph aggregation to both views with
leveraging distance and angle information at different gran-
ularity levels. Secondly, we further aim to make both views
complement each other for better geometric comprehension.
Here, we take the molecular geometry into consideration and
propose the 2D-3D geometric contrastive scheme to bridge
the knowledge gap between geometric structure modeling
and graph representation learning without labels. The rep-
resentative 3D spatial information can be distilled with the
guidance of the stable 2D information, which provides the
chemical semantics. The fusion of 2D and 3D graphs pro-
motes the proposed GeomGCL extract more expressive rep-
resentation for property prediction. To summarize, the main
contributions of our work are as follows:

• To the best of our knowledge, we are among the first
to develop the contrastive learning method for molecu-
lar graphs based on geometric views. By means of nat-
urally contrasting the 2D and 3D view graphs of one
molecule without any random augmentation process, our
proposed GeomGCL makes best of the consistent and re-
alistic structures for better representation learning.

• The GeomGCL employs the dual-channel message pass-
ing neural network, which adaptively captures both 2D
and 3D geometric information of molecular graphs. The
additional spatial regularizer further preserves the rela-
tive relation of geometry and improves the performance.

• The experiments on seven molecular datasets demon-
strate that the proposed model outperforms the state-of-
the-art GNN and graph contrastive learning methods.

2 Related Work
The research topic of this paper is associated with molecu-
lar representation learning based on graph neural networks,
especially the promising geometric and contrastive learning
on molecular graphs. We will briefly discuss these topics.

2DAngle

Local Distance

3DAngle

Global Distance

2D View Graph 3D View Graph Geometric Factors

Figure 1: An illustrative example of geometric distances and
angles in 2D view and 3D view graphs.

2.1 Molecular Representation Learning
As the important basis of property prediction, molecular rep-
resentation learning has been a popular research area. The
earlier feature-based methods learn the fixed representations
from molecular descriptors or chemical fingerprints (Rogers
and Hahn 2010), which ignore the graph structures and rely
on the feature engineering. Recent years have witnessed the
great advantage of graph neural networks (GNNs) in mod-
eling graph data (Wu et al. 2020), much attention has been
paid to applying GNN models to learn molecular graph rep-
resentations. The graph convolution model (Duvenaud et al.
2015) is first introduced to encode molecular graphs based
on atomic features. AttentiveFP (Xiong et al. 2019) adopts
the graph attention network to make the best of graph struc-
tures and has become one of the state-of-the-art methods for
molecular property prediction. More recently, incorporat-
ing bond features into the message passing neural networks
(Gilmer et al. 2017) turns into a trend of learning better rep-
resentations. DMPNN (Yang et al. 2019) is proposed to per-
form the edge-based message passing process over the edge-
oriented directed graph, which obtains atom and bond em-
beddings concurrently. The communicative message pass-
ing models (Song et al. 2020; Chen et al. 2021) further ex-
tend this work through improving the node-edge interac-
tive kernels as well as applying the transformer framework
to capture long-range dependencies. Nevertheless, these ap-
proaches can not deal with the geometry of molecules and
lack the ability of learning the non-local correlations among
atomic nodes on the molecular graph.

2.2 Geometric Learning on Molecular Graphs
In the field of deep learning, geometry-based methods have
shown prominent performance (Bronstein et al. 2017). Since
molecules have the geometric structures intrinsically, a few
attempts have also been made to develop geometric graph
learning models for the molecular graphs (Atz, Grisoni, and
Schneider 2021). From the 2D view of the molecular graph,
MAT (Maziarka et al. 2020) is designed to encode the inter-
atomic distances with augmenting the attention mechanism
in a transformer architecture. Meanwhile, there are some ef-
forts to model the 3D molecular structures. SGCN (Danel
et al. 2020) simply utilizes the 3D coordinates to apply the
aggregation process. Such an intuitive method is sensitive
to the coordinate systems, which leads to the poor perfor-
mance of learning geometric graphs. Furthermore, several
models that are invariant to translation and rotation of atom
coordinates are proposed through designing the geometric
kernels (Klicpera, Groß, and Günnemann 2020) or strength-



ening the node-edge interactions with geometric informa-
tion (Shui and Karypis 2020). However, these studies have
shown not just strengths but also some limitations. Firstly,
most of the efficient molecule-oriented geometric learning
methods target at the quite small molecules for quantum
property prediction. Secondly, none of these methods incor-
porate 2D and 3D geometric information simultaneously. To
overcome these limitations, we propose to learn the 2D-3D
geometric factors adaptively and synergistically.

2.3 Contrastive Learning on Molecular Graphs
Along the other line of development, graph contrastive
learning methods (Wu et al. 2021) have their own advan-
tages and have achieved extraordinary performance in many
applications (You et al. 2020; Qiu et al. 2020; Wang et al.
2021). However, the existing models designed for molecular
graphs receive little attention. InfoGraph (Sun et al. 2019)
manages to maximize the mutual information between the
representations of the graph and its substructures to guide
the molecular representation learning. To alleviate the prob-
lem of random corruption on molecular graphs which may
alter the chemical semantics, MoCL (Sun et al. 2021) adopts
the domain knowledge-driven contrastive learning frame-
work at both local- and global-level to preserve the seman-
tics of graphs in the augmentation process. However, the
learning ability of such model depends on the well-designed
substitution rules. The deficiency of geometric information
in graph contrastive learning limits the capability of effective
molecular representation learning. To this end, we develop a
novel contrastive learning model to integrate the geometry
of molecules with chemical semantics by means of contrast-
ing the 2D and 3D view graphs.

3 Preliminaries
Generally, a molecular graph with geometric information
can be represented as G = (V, E ,C), where V and E de-
note the node (atom) set and edge (bond) set respectively.
C ∈ R|V |×d denotes the coordinate matrix for atoms, where
d ∈ {2, 3} is the spatial dimension. Given a molecule, the
specific 2D and 3D view graphs are defined as following.

Definition 1 (2D View Graph.) The 2D view graph is de-
fined as G2d = (V, E2d,C2d), where the edges in E2d cor-
respond to the primary covalent bonds in the molecule, and
C2d
v = {x, y} denotes the coordinate of atom v.

Definition 2 (3D View Graph.) Similarly, the 3D view
graph can be represented as G3d = (V, E3d,C3d). Note
that the generated coordinate in three dimensional space
is non-deterministic by means of the estimation algorithm,
thus we repeatedly generate coordinates P times andC3d =
1
P

∑P
p=1C

3d,p. The edge set E3d is constructed based on
the 3D spatial coordinates, which contains all edges whose
distances are smaller than the cutoff threshold dθ. It can be
formulated as E3d = {euv|dist(C3d

u ,C
3d
v ) < dθ}.

Problem Statement. Given a molecule, we can con-
struct the 2D view graph G2d and 3D view graph G3d.
Let X be the atom feature matrix and E be the bond

feature matrix, our goal is to train a geometric graph en-
coder f(G2d,G3d,X,E) to learn the molecular representa-
tion vector h without any label information. Then the well-
trained model is utilized for various downstream property
prediction tasks through the finetune process.

4 Model Framework
In this section, we present the proposed contrastive learn-
ing framework GeomGCL with leveraging dual geometric
views of the molecular graph. As shown in Figure 2, after
the derivation of 2D and 3D view graphs from the origi-
nal molecule in SMILES format, GeomGCL equips with a
dual-channel geometric message passing architecture (Ge-
omMPNN) to learn the representations of both graphs adap-
tively. By contrast with the deterministic graph structure of
2D view, the 3D structure of molecule is always calculated
through a stochastic process of 3D conformation genera-
tion. Consequently, while the 3D view graph contains more
abundant geometric structure, such uncertain information is
not always beneficial for molecular representation learning.
To this end, we propose to bypass this challenge by adopt-
ing a geometric contrastive learning strategy across 2D and
3D views. This geometric-view supervision mutually makes
both views complement each other. On the one hand, Ge-
omMPNN can distill the valuable 3D structure under the
guidance of 2D view. On the other hand, it helps to inject
3D geometric information for better 2D molecular represen-
tation learning. In the following sections, we use the bold
letters (l, r, φ, θ, euv or au) to represent embeddings of the
corresponding symbolic indicators (l, r, φ, θ, euv or au).

4.1 Geometric Embedding
Since the primary 2D or 3D coordinates are changeable and
inconsistent across different coordinate systems, we manage
to calculate the definite geometric factors (i.e., angle and dis-
tance) and then utilize radial basis functions (RBF) to obtain
dual-level geometric embeddings. As illustrated in Figure 1,
the local distance l and 2D angle φ refer to the distance and
angle based on the covalent bonds respectively, which carry
the critical chemical information. In the 3D view graph, the
global distance r further provides non-local correlations in
a molecule, while the 3D angle θ indicates the spatial distri-
bution of global connections. Following the previous work
(Shui and Karypis 2020), we adopt several RBF layers to
encode diverse geometric factors:

l = RBF (l) =
K
_
k=1

exp
(
− βl(exp(−l)− µl,k)2

)
(1)

r = RBF (r) =
K
_
k=1

exp
(
− βr(exp(−r)− µr,k)2

)
(2)

φ = RBF (φ) =
K
_
k=1

exp
(
− βφ(φ− µφ,k)2

)
(3)

θ = RBF (θ) =
K
_
k=1

exp
(
− βθ(θ − µθ,k)2

)
(4)

where_ is the concatenation operation over scalar values to
form a K-dimensional geometric embedding. For local and
global distances, the K central points {µ∗,k} are uniformly
selected between exp(−∗) (∗ is l or d) and 1, while β∗ =

Administrator
高亮文本



2D View Graph

3D View Graph

SMILES

Stochastic Mapping

Deterministic Mapping

Local Distance
Encoder

2DAngle
Encoder

Global Distance
Encoder

3DAngle
Encoder

Attentive
Pooling

Attentive
Pooling

𝟑𝑫 𝑽𝒊𝒆𝒘 𝑪𝒉𝒂𝒏𝒏𝒆𝒍

𝟐𝑫 𝑽𝒊𝒆𝒘 𝑪𝒉𝒂𝒏𝒏𝒆𝒍

(a) Geometric Embedding (b) Adaptive Geometric MPNN

𝒛𝟐𝒅

𝒛𝟑𝒅

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒

ℒ!ℒ"

𝑆𝑝𝑎𝑡𝑖𝑎𝑙

Loss

2D Projection
Head

3D Projection
Head

(c) Geometric Graph Contrastive

+

2D Geometric
Message Passing

3D Geometric
Message Passing

Figure 2: Illustration of geometric graph contrastive learning framework (GeomGCL) on molecular graphs.

( 2
K (1 − exp(−∗))−2. For 2D and 3D angles, each µ∗,k is

between 0 and π with β∗ = ( 2πK )−2, where ∗ denotes φ or θ.

4.2 Adaptive Geometric Message Passing
As shown in Figure 3, we further design an adaptive mes-
sage passing scheme (GeomMPNN) to learn the topologi-
cal structures of molecules with geometric information in a
Node-Edge interactive manner. On the whole, GeomMPNN
consists of Node→Edge, Edge→Edge and Edge→Node
three-stage message passing layers to iteratively update the
node and edge embeddings, followed by a Node→Graph at-
tentive pooling process. Both of the dual-channel networks
generally follow such architecture and can adaptively learn
the 2D and 3D geometric factors with fine-grained designs.

(i) Node→Edge Message Passing. Since only the exist-
ing bonds in a molecule have the initial edge features (i.e.,
bond features), the edge embedding should be firstly updated
through aggregating the pairwise node embeddings with in-
volving the associated features. To enrich the connection in-
formation from different aspects, we use MLP to integrate
the chemical bond feature e0uv and global distance embed-
dings ruv for 2D- and 3D-edge embeddings respectively:

e2d,tuv =MLP (a2d,t−1
u ‖ a2d,t−1

v ‖ e0uv) (5)

e3d,tuv =MLP (a3d,t−1
u ‖ a3d,t−1

v ‖ ruv) (6)

where e2d,tuv and e3d,tuv are edge embeddings at t-th layer, au
is the node (atom) embedding, the superscript 2d or 3d in-
dicates the view channel, and ‖ represents the concatenation
operator. Then the dual-channel edge embeddings can con-
tain both geometric and chemical semantic information.

(ii) Edge→Edge Message Passing. Different from the
general graph, both the 2D view and 3D view graphs of a
molecule have the unique geometric attributes, which can
significantly influence the specific property of the molecule.
After the derivation of edge embeddings, GeomMPNN per-
forms an edge→edge message passing process to perceive
the geometric distribution in the molecule through 2D and

3D angle-aware aggregations. Considering that the neigh-
bors in 2D view are more sparse by contrast with the neigh-
bors in 3D view, we develop the well-directed layers for both
views. Specifically, for 2D view graph learning, the follow-
ing angle-injected function is employed to update the 2D
edge embedding:

e2d,tuv =
∑

ewu∈A(euv)

W t
φφwuv � (W t

ee
2d,t
uv ) (7)

where A(euv) denotes the set of neighboring edges of the
edge euv , φwuv is the 2D angle embedding between the
edge ewu and euv , � is the element-wise dot operation, W t

φ

and W 2d,t
e are learnable parameters. For the 3D view graph,

there are sufficient neighbors around each edge. Inspired by
the recent work (Li et al. 2021), we divide the neighbor-
ing edges of each target edge into several angle domains
A1, ...,An according to 3D spatial angle θ. Then we apply a
hierarchical aggregation process among edges for 3D view
graph learning, which consists of local and global stages:

e3d,tuv,i =
∑

ewu∈Ai(euv)

W t
θ,iθwuv � (W t

e,ie
3d,t
uv ) (8)

e3d,tuv =
n

||
i=1

Pool
(
{e3d,tuv,i|1 ≤ i ≤ n}

)
� e3d,tuv,i (9)

where e3d,tuv,i is the aggregated 3D edge embedding at i-th
angle domain through the local stage, We,i and W t

θ,i are
trainable parameters, θwuv is the 3D angle embedding be-
tween the edge ewu and euv . Pool means the max pooling
function over all n local edge embeddings, which can gen-
erally extract the high-level spatial distribution information
to strengthen the geometric structure learning.

(iii) Edge→Node Message Passing. After obtaining the
angle-aware edge embeddings e2d,tuv and e3d,tuv , we apply the
edge→node message passing to fulfil the propagation pro-
cess from the edge back to the node. The essential dis-
tance factor between nodes is well-considered via the similar
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3D View Embedding

𝑁𝑜𝑑𝑒 → 𝐸𝑑𝑔𝑒

𝐸𝑑𝑔𝑒 → 𝐸𝑑𝑔𝑒

𝐸𝑑𝑔𝑒 → 𝑁𝑜𝑑𝑒

𝑁𝑜𝑑𝑒 → 𝐸𝑑𝑔𝑒

𝐸𝑑𝑔𝑒 → 𝐸𝑑𝑔𝑒

𝐸𝑑𝑔𝑒 → 𝑁𝑜𝑑𝑒

𝑁𝑜𝑑𝑒 → 𝐸𝑑𝑔𝑒

𝐸𝑑𝑔𝑒 → 𝐸𝑑𝑔𝑒

𝐸𝑑𝑔𝑒 → 𝑁𝑜𝑑𝑒 𝐸𝑑𝑔𝑒 → 𝑁𝑜𝑑𝑒

𝐸𝑑𝑔𝑒 → 𝐸𝑑𝑔𝑒

𝑁𝑜𝑑𝑒 → 𝐸𝑑𝑔𝑒

𝑁𝑜𝑑𝑒 → 𝐺𝑟𝑎𝑝ℎ

Figure 3: The architecture of GeomMPNN layers.

adaptive scheme with the previous edge→edge component:

a2d,t
v =

∑
euv∈D(av)

W t
l luv � (W t

ae
2d,t
uv ) (10)

a3d,t
v =

m

||
i=1

∑
euv∈Di(av)

W t
r,iruv � (W t

a,ie
3d,t
uv ) (11)

where W t
l , W t

a, W t
r,i and W t

a,i are learnable parameters, luv
and ruv are the geometric embeddings of local and global
distances respectively, D(au) is the set of all neighboring
edges for node au in 2D view, Di(au) is the set of neigh-
boring edges located in i-th distance domain among all m
divided domains in 3D view.

(iv) Node→Graph Attentive Pooling. Since all geomet-
ric factors thoroughly enrich the node and edge embeddings
in both 2D and 3D views via T stacked message passing lay-
ers, the final representations a2d,T

v and a3d,T
v can reflect the

graph topology along with the molecular geometry. To fur-
ther get the graph-level representation with identifying the
important nodes, we follow (Xiong et al. 2019) and adopt
the node→graph attentive pooling layer. For simplicity, we
use av to represent a2d,T

v or a3d,T
v and use h to represent

h2d or h3d. The graph-level embedding h is updated itera-
tively through the attentive propagation process, which starts
with the initial embedding h0 =

∑
v av .

gt =
∑
av∈V

softmax(ht ‖ av)W t
gav (12)

ht+1 = GRU(ht, gt), t = 0, 1, .., Tg (13)

where gt is the global context message at t-th pooling layer,
which aggregates the valuable nodes from the full set V . Af-
ter performing Tg pooling layers, the final graph representa-
tions h2d for 2D view and h3d for 3D view are acquired.

4.3 Geometric Contrastive Optimization
Despite the great progress made in the study of graph con-
trastive learning, the distinctive semantics and geometry
of molecular graphs are always ignored. As a result, the
conventional data augmentations may change the targeted
molecular property as stated in (Sun et al. 2021), which em-
phasized the importance of domain knowledge to generate
molecule variants. To tackle this challenge, we intend to en-
hance the molecular representation learning from the per-
spective of geometric contrast. As shown in Figure 2(c), the

correlated 2D and 3D views can supervise each other with-
out constructing additional fake samples. First, the 2D and
3D projection heads are adopted to map the representations
of two views into the space for contrastive learning:

z2di =MLP (h2d
i ), z3di =MLP (h3d

i ) (14)

Our goal is to make the maximum consistency between 2D-
3D positive pairs {z2di , z3di } compared with negative pairs.
Given one batch with N molecules, we have the following
contrastive loss function under 2D-3D geometric views:

Lci = L
2d,c
i + L3d,c

i

= −log e〈z
2d
i ,z3d

i 〉/τ∑N
j=1 e

〈z2d
i ,z3d

j 〉/τ
−log e〈z

3d
i ,z2d

i 〉/τ∑N
j=1 e

〈z3d
i ,z2d

j 〉/τ

(15)

where 〈·〉 denotes the inner product to measure the similar-
ity, τ is the scale parameter. Since z2di and z3di are two em-
beddings in different views from the same molecule, they
are regarded as a positive pair while the remaining pairs in
the batch are considered as negative pairs. Furthermore, to
reflect the local spatial correlations across 3D geometric do-
mains, we propose additional constraints as a spatial regu-
larization technique. The key idea of this regularizer is to
encourage the transformation matrices of adjacent angle do-
mains to be similar to each other:

Ls =
T∑
t=1

n−1∑
i=1

‖W t
θ,i+1 −W t

θ,i‖2 (16)

Finally, we combine the spatial and contrastive loss and ar-
rive at the following objective function:

Lgcl =
∑M

i=1
Lci + λLs (17)

where M is the number of molecules in the dataset, λ is the
trade-off parameter that controls the importance of spatial
regularizer to better guide the representation learning.

4.4 Downstream Inference
When GeomGCL has been optimized through the geometric
contrastive learning process, we utilize the well-trained 2D
geometric MPNN f2d(·) and 3D geometric MPNN f3d(·)
for downstream applications. The representations of two
views are combined to predict the molecular properties via
the finetune process. Formally, the prediction head can be
written as follows:

ŷ =MLP
(
MLP

(
f2d(G2d)

)
+MLP

(
f3d(G3d)

))
(18)

For different tasks, we use the cross entropy loss function
Lce for classification loss Lcls and use the L1 loss function
L1 for regression loss Lreg . The spatial regularizer is also
adopted for better performance.

Lcls = Lce(ŷ, y) + λLs (19)
Lreg = L1(ŷ, y) + λLs (20)

where ŷ denotes the predicted value and y is the measured
true value of one specific molecular property.



Dataset # Tasks Task Type # Molecules

ClinTox 2 Classification 1484
Sider 27 Classification 1427
Tox21 12 Classification 7831

ToxCast 617 Classification 8597
ESOL 1 Regression 1128

FreeSolv 1 Regression 643
Lipophilicity 1 Regression 4200

Table 1: Statistics of seven molecular datasets.

5 Experiments
In this section, we conduct experiments on seven well-
known benchmark datasets to demonstrate the effectiveness
of GeomGCL for molecular property prediction.

5.1 Experiment Settings
Datasets. To evaluate the performance of our proposed
model with the existing molecular representation learning
methods, we use seven molecular datasets from Molecu-
leNet (Wu et al. 2018) including ClinTox, Sider, Tox21 and
ToxCast four physiology datasets for graph classification
tasks, as well as ESOL, FreeSolv and Lipophilicity three
physical chemistry datasets for graph regression tasks. The
main statistics of datasets are summarized in Table 1.

Baselines. We compare the proposed GeomGCL with
a variety of state-of-the-art baseline models for molec-
ular property prediction, which includes molecular mes-
sage passing-based methods, geometry learning-based GNN
methods, and graph contrastive learning methods. The first
group consists of three well-designed message passing
neural networks. AttentiveFP (Xiong et al. 2019) adopts
the graph attention network for molecular representation
learning. DMPNN (Yang et al. 2019) and CoMPT (Chen
et al. 2021) are message passing models with considering
edge features in a node-edge interactive manner. Geome-
try learning-based models contain several GNN approaches.
SGCN (Danel et al. 2020) directly encodes the atomic posi-
tion information in the aggregation process. MAT (Maziarka
et al. 2020) incorporates the local geometric distance into
the graph-based transformer model. To comprehensively re-
flect the superiority of our proposed model, we also compare
GeomGCL against with HMGNN (Shui and Karypis 2020)
and DimeNet (Klicpera, Groß, and Günnemann 2020), both
of which can learn the geometric distance and angle factors
in 3D space for quantum property prediction. Besides, the
recent graph contrastive models are compared to show the
power of our proposed 2D-3D geometric contrastive learn-
ing strategy. InfoGraph (Sun et al. 2019) maximizes the mu-
tual information between nodes and graphs, while MoCL
(Sun et al. 2021) introduces the multi-level domain knowl-
edge for molecular graphs in a well-designed contrastive
learning framework.

Implementation Details. Following the previous works,
we evaluate all methods through the k-fold cross-validation
experiments, and we set k as 10 to report the robustly aver-

age experimental results. As recommended by the Molecu-
leNet benchmarks (Wu et al. 2018), we randomly split each
dataset into training, validation, and testing set with a ratio
of 0.8/0.1/0.1. The validation set is used for early stop and
model selection. We use ROC-AUC and RMSE metrics for
graph classification and graph regression tasks respectively.

The 3D structures of molecules are generated for P =
50 times through the stochastic optimization algorithm of
Merck Molecular Force Field (MMFF), which is imple-
mented in the RDKit package (Tosco, Stiefl, and Landrum
2014). For our model, We use Adam optimizer for model
training with a learning rate of 1e-3. We set the batch size
as 256 for contrastive learning and 32 for finetuning with
the scale parameter τ = 0.5. The hidden size of all models
is set to 128. The cutoff distance dθ is determined (4 Å or
5 Å) according to the size of the molecule on each dataset.
We set the dimension K of geometric embedding as 64. The
numbers of 3D angle domains and global distance domains
are set to 4. The balancing hyper-parameter λ is set to 0.01
according to the performance on validation set. For baseline
models, we tune parameters of each method based on recom-
mended settings in the paper to ensure the best performance.
As a general setting (Sun et al. 2019, 2021), our proposed
GeomGCL and contrastive learning baselines are pretrained
on molecular graphs of each dataset, and then we finetune
the model for the downstream task on the same dataset.

5.2 Performance Evaluation
Overall Comparision. The performance results of eval-
uating each model for graph classification and regression
tasks are presented in Table 2. As we can see, our model
significantly outperforms all the baselines on both types of
tasks. On the whole, we can observe that our proposed Ge-
omGCL improves the performance over the best message
passing baselines with 2.18% and 10.4% for classification
and regression tasks, respectively.

Among all baseline approaches, the well-designed mes-
sage passing models generally show the best perfor-
mance, which indicates that the essential bond features
of the molecule can provide chemical semantic infor-
mation for molecular representation learning. Specifically,
since DMPNN and CoMPT adopt the node-edge interactive
scheme, they perform slightly better than AttentiveFP. As
to geometry-based baseline models, MAT can take advan-
tage of the geometric distance from the molecular graph and
performs much better than SGCN, which directly encodes
the 3D coordinates and can be easily affected by the coordi-
nate systems. Although HMGNN and DimeNet can identify
the distance and angle information, they learn the molecu-
lar embedding only based on the 3D geometric graph which
might be noisy. Besides, these models are designed for quan-
tum property prediction and may not be expert in mod-
eling the larger molecules. By contrast, our GeomMPNN
and GeomGCL are capable of learning from the stable 2D
graph and the informative 3D geometric structure. For con-
trastive learning methods, MoCL achieves better results than
InfoGraph, showing the significance of domain knowledge
for developing the contrastive strategy without changing the
chemical semantics. However, the failure of leveraging the



Model Graph Classification (ROC-AUC) ↑ Graph Regression (RMSE) ↓
ClinTox Sider Tox21 ToxCast Cls.Ave ESOL FreeSolv Lipophilicity Reg.Ave

AttentiveFP 0.808 0.605 0.835 0.743 0.748 0.578 1.034 0.602 0.738
DMPNN 0.886 0.637 0.848 0.743 0.779 0.647 1.092 0.591 0.777
CoMPT 0.877 0.626 0.836 0.755 0.774 0.589 1.103 0.590 0.761

SGCN 0.825 0.560 0.769 0.656 0.703 1.329 2.061 1.075 1.488
MAT 0.898 0.619 0.834 0.735 0.772 0.624 1.059 0.705 0.796

HMGNN 0.680 0.607 0.794 0.702 0.696 0.701 1.207 0.720 0.876
DimeNet 0.760 0.615 0.780 0.645 0.7000 0.633 0.978 0.614 0.742

InfoGraph 0.781 0.585 0.793 0.705 0.716 0.914 2.104 0.845 1.288
MoCL 0.739 0.629 0.824 0.718 0.727 0.934 1.478 0.742 1.051

GeomMPNN 0.900 0.638 0.838 0.743 0.780 0.555 0.913 0.578 0.682
GeomGCL 0.919 0.648 0.850 0.763 0.796 0.575 0.866 0.541 0.661

Table 2: Experimental results of our proposed GeomMPNN and GeomGCL along with all baselines on seven molecular graph
datasets. Cls.Ave and Reg.Ave denote the average results of classification and regression tasks, respectively.
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Figure 4: Evaluation of GeomGCL with its variants.

critical geometric information limits their ability to model
the molecule without labels, while our method can cap-
ture geometry-aware structural information by contrasting
the 2D-3D geometric views. Therefore, GeomGCL is much
effective for molecular representation learning and can ac-
curately predict each targeted property.

Ablation Study. To further investigate the factors that in-
fluence the performance of the proposed GeomGCL frame-
work, we conduct the ablation study on four benchmark
datasets for classification and regression tasks with design-
ing different variants of GeomGCL.
• GeomMPNN-2D only preserves the single-channel 2D

geometric message passing layers.
• GeomMPNN-3D only preserves the single-channel 3D

geometric message passing layers.
• GeomMPNN uses the dual-channel geometric message

passing layers without contrastive learning.
• GeomGCL-NoReg removes the spatial regularizer Ls.

As shown in Figure 4, GeomGCL achieves the best per-
formance among all architectures, proving the necessity of
learning the 2D-3D geometric structures contrastively and
synergistically. To be specific, we can find that learning rep-
resentations from a single 2D or 3D view can not always
perform better than the other view across different datasets,
which supports our hypothesis that only a geometric view of
molecular graph is not sufficient. Therefore, decoupling 2D
or 3D geometric message passing layers from GeomGCL
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Figure 5: Analysis for the balancing parameter of Ls.

yields a significant drop in performance. Additionally, the
use of spatial regularizer when training the model can help
GeomGCL to discriminate the relative correlations of differ-
ent angle domains and then contributes to the performance
improvements. What’s more, GeomMPNN significantly per-
forms worse than GeomGCL, which confirms that our geo-
metric contrastive learning scheme is beneficial for molecu-
lar representation learning.

Parameter Analysis. Finally, we analyze the performance
variation for GeomGCL by varying the coefficient λ to look
deeper into the impact of the spatial regularizer. As depicted
in Figure 5, we observe that the performance first tends to
get better with incorporating more 3D angle domain infor-
mation while training the model, and then begins to drop
off slightly. The appropriate trade-off weight can assist the
model in identifying the geometric factors and enhancing
the representation learning. Overall, the performance of Ge-
omGCL is stable and always better than baseline methods.

6 Conclusion
In this paper, we propose a novel geometric graph con-
trastive learning framework named GeomGCL for molecu-
lar representation learning, which builds the bridge between
the geometric structure learning and the graph contrastive
learning. Along this line, we design the dual-channel geo-
metric message passing neural networks to sufficiently cap-



ture the distance and angle information under both 2D and
3D views. Then the appropriate geometry-based contrastive
learning strategy is proposed to enhance the molecular rep-
resentation learning with the spatial regularizer. The experi-
mental results on the downstream property prediction tasks
demonstrate the effectiveness of the proposed GeomGCL.
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Słowik, A.; and Maziarka, Ł. 2020. Spatial graph convo-
lutional networks. In International Conference on Neural
Information Processing, 668–675. Springer.

Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell,
R.; Hirzel, T.; Aspuru-Guzik, A.; and Adams, R. P. 2015.
Convolutional Networks on Graphs for Learning Molecular
Fingerprints. Advances in Neural Information Processing
Systems, 28: 2224–2232.

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In International conference on machine learn-
ing, 1263–1272. PMLR.

Goh, G. B.; Hodas, N. O.; and Vishnu, A. 2017. Deep learn-
ing for computational chemistry. Journal of computational
chemistry, 38(16): 1291–1307.

Hawkins, P. C. 2017. Conformation generation: the state
of the art. Journal of Chemical Information and Modeling,
57(8): 1747–1756.

Klicpera, J.; Groß, J.; and Günnemann, S. 2020. Directional
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